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FULLY DEVELOPED F L O W  IN A CURVED PIPE OF 
ARBITRARY CURVATURE RATIO 
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Department of Mechanical Engineering, University of Calijornia, Berkeley, C A  94720, U.S.A. 

SUMMARY 

It is generally assumed in curved pipe flow analyses that the curvature ratio, 6, of the pipe is very small, in 
which case the flow depends on a single parameter, the Dean number. This is not the case if 6 is not very small. 
To determine the importance of this effect we have numerically solved the full Navier-Stokes equations, in 
primitive variable form, for arbitrary values of 6. A factored AD1 finite-difference scheme has been used, 
employing Chorin’s artificial compressibility technique. The results show that the central-difference 
calculation on a staggered grid is stable, without adding artificial damping terms, due to coupling between 
pressure and velocity. A spatially variable time step is used with a fixed Courant number. 
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1. INTRODUCTION 

Fully developed viscous flow in a curved pipe of circular cross-section was studied theoretically 
first by Dean.’g2 He showed that for small curvature ratio, defined by 6 = a / L ,  the flow depends 
only on the single parameter K = 2 6 R ; ,  first introduced by Dean and now called the Dean 
number. Here a is the radius of the pipe cross-section and L the radius of curvature of the pipe 
central axis; the parameter R ,  is defined as R ,  = Ga3/4pv ,  where G is the constant pressure gradient 
maintaining the flow, ,u the viscosity and v the kinematic viscosity. McConalogue and Srivastava3 
showed formally that the flow in a curved pipe with small 6 is characterized by a single parameter D, 
which is a variant of the Dean number and defined as (Ga2/p) ( ~ U ~ / V ~ L ) ” ~ ,  and obtained a 
numerical solution for the range 96 < D < 600. Greenspan4 and Collins and Dennis5 have carried 
out finite-difference solutions using vorticity-stream-function formulations for flows with small 6. 
Austin and Seader6 solved the Navier-Stokes equations in the vorticity-stream-function form 
numerically for the flow within a rigorously treated toroidal geometry (i.e. no assumption on 6) and 
obtained solutions up to K = 1008 for 6 = 1/9.06. (Some numerical analysts dealing with 
developing duct flow, as well as experimental workers, find it convenient to introduce another 
Dean number, K = ( ~ W , , , U / V ) ~ ’ / ~ ,  where W,,, is the mean axial velocity.) Dennis and Ng’ extended 
McConalogue and Srivastava’s Fourier series analysis and obtained solutions up to D = 5000, 
which corresponds to K = 369.5. 

For developing flow in a curved pipe, Soh and Berger’ showed that even when the axial flow 
appears to be fully developed, especially near the inner bend, at relatively large downstream 
locations the secondary flow in the core region still oscillates in magnitude, with the flow near the 
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wall gradually becoming unchanging as the flow proceeds downstream. Oscillations in the 
secondary flow are more conspicuous for high Dean numbers, implying that a very large value 
for the last downstream station in 9, at which the flow is fully developed, should be used to 
obtain solutions for high IC. It therefore seems to be very difficult and numerically wasteful to 
obtain the fully developed flow field from a developing-flow calculation. 

It is the aim of this paper to solve the full Navier-Stokes equations for the fully developed flow of 
a homogeneous Newtonian fluid in a curved pipe of circular cross-section for arbitrary curvature 
ratio 6. Obtaining second-order accurate numerical solutions using central difference formulations 
without adding artificial damping terms we shall be able to determine the effect of 6 on the flow. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Figure 1 shows the toroidal co-ordinate system used in the analysis. Here r’ is the radial distance 
from the centre of the pipe 0 , 4  the circumferential angle measured from the positive x’ axis and 9 
the streamwise angular distance. The velocity components corresponding to the (r’, 4,e) co- 
ordinates are (u‘, v ’, w ’). Non-dimensionalizing velocities, distances, time t’ and pressure p’ by w,, 
a, a/W, and p W;, respectively, where p is the density and W, the reference velocity, defined 
in Section 4, we can write the Navier-Stokes equations for the fully developed flow as 

aw 6W 
- + s w  + -(u cos 4 - v sin 4) = + ’[ T w  - $1, 
at B B Ro 

Figure 1. Toroidal co-ordinate system 
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where J is h,h,B, B = 1 + Grcos 4, h ,  = 1, h ,  = r,  and the operators S and T are defined by 

and 

The reference velocity and R, are defined as 

and 
R ,  = Woa/v, 

where G, the pressure gradient, is given by - (l/L)(dp’/dO); the Dean number D is related to 
the Reynolds number R, by 

D = Ri(26)”’. (7) 
The term 1/B appearing in (3), which approaches unity as 6-0, is the dimensionless pressure 
gradient necessary to maintain the flow. 

The no-slip boundary condition at the wall requires that 

u = u = w = O  at r = l .  (8) 
Because the flow is symmetric about the x-axis it follows that 

The plane z = 0, where each cross-sectional view coincides with the x-axis, is called the plane of 
symmetry. 

Equations (1)-(4) with boundary conditions (8), (9) are to be integrated in time as an initial-value 
problem. The pressure-velocityg and Poisson equation methodslO for the pressure are commonly 
used for that purpose. Any of.these methods are computationally wasteful if our goal is to obtain a 
steady solution only because V.u = 0 has to be satisfied at  every time step. 

To find the steady solution of the Navier-Stokes equations Chorin’ introduced the following 
auxiliary system: 

aU 1 
a t  Re - + V.(uu) = - v p  + -v2u  

and 
a P  
a t  

5-  + v . u  = 0. 

The constraint V.u = 0 is replaced by the evolution equation (1 1). The 5 appearing in (1 1) is called 
the coefficient of artificial compressibility and plays a role similar to that of a relaxation parameter. 
To apply the artificial compressibility method to our problem, the equations to be solved are 
(1)-(3) and the evolution form of the continuity equation, 
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subject to boundary conditions (8), (9) and specified initial conditions on u and p for given 
parameters Ro and b. 

3. NUMERICAL FORMULATION 

The Navier-Stokes equations with artificial compressibility, (1)-(3) and (12), can be rewritten as 

where 

H 

C =  

and 

, A,= 

aH 
-+(A, at + A,)H + C = O ,  

i a  
h, aY 0 0 M 

0 M O  0 

0 O M  0 
i a  

i ~ a r  
_- (h2B.) 0 0 0 

- 
0 0 0  r N  

l a  
0 N 0 -- 

h 2  dd) 
0 0 N O  

A, = 

&$(h,B.) 0 0 
- 

i - ( c 2 / r )  - 6 cos +(wz/B) - R; { - [ (2du /a+  + u ) / r Z ]  + (60 sin q5/rB) - a2 cos q5(u cos 4 - u sin q5)/Bz} 

(uu / r )  + 6 sin +(wZ/B) - R; { [(2au/d+ - u) /rz ]  - (6u sin q5/rB) + 6'sin +(ucos q5 - usin q5)/S2 } 

[Ciw(ucos 4 - usin + ) / E l  - B-'  + (R;'6'w/BZ) 
0 

Introducing an intermediate step, denoted by *, and approximating the convection terms with 
the values at time nAt, we can advance (13) in time using the algorithm 

(14) 1. H* - H" + At(A:H" + A;H* + C") = 0 
H " + l -  H" + At(A:H"+' + A;H* + C") = 0 

These equations can be written in a simpler 'delta form' as 

(I + At A;) AH* = - At(A; + A:)H" - At C" (15) 

(16) (I + At A:)AH"+' = AH* 
where AH* = H* - H", AH"" = H"+' - H" and I is the identity matrix. 

The numerical scheme above will be employed in a strict central-difference form for the staggered 
grid system shown in Figure 2. We call the calculation procedure for (15) the &sweep, that for (16) 
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Figure 2. Schematic arrangement of the staggered grid; o pressure and w; x u-velocity; u-velocity; and 
-pressure or w-cell; ---- u-cell; . . . . u-cell 

the r-sweep. During the &sweep Au* and Ap* are coupled to yield a 2 x 2 block tridiagonal matrix, 
whereas Au* is decoupled from the pressure. During the r-sweep AM"' and Ap"' are coupled, 
with Au" + decoupled from the pressure. The central-difference formulation in the staggered grid 
has the property that pressure is two-point central-differenced in each sweep. The velocity- 
pressure coupling and two-point central-differencing of the pressure make the system (15), (16) 
stable without introducing artificial damping terms. Details of the central-difference formulations 
are given in the Appendix. 

Owing to the presence of a boundary layer for large R,, in which velocity changes rapidly for 
both the main and secondary flows, a co-ordinate stretching is advisable near the wall, such that 
fine grid lines are clustered near r = 1 and equidistance is maintained in the computational domain. 
To do this we introduce an r-co-ordinate stretching function 

ln(sy/II + 1) 
ln(s + 1) r = f ( d  = 

where I1 is the number of grid points in the r-direction, and s is the value representing the degree of 
stretching. Then, h ,  becomes f'(y) and Ar is f'(q), fixing Ay = 1. The a/ar in the Navier-Stokes 
equations is then simply replaced by d/ay. 

The treatment of the centre, r or y = 0, requires some care. In particular, the calculation of 
momentum flux and au/dy on the y--face of the first ith u-cell in the y direction using the present 
staggered grid calls for the value of u at the centre. The exact values of u and u can be written for the 
flow symmetric with respect to z = 0 as 

u = uo cos 4 and u = - u, sin 4, (18) 
where uo is the x-component of velocity at y = 0. The best numerical approximation to 
uo is 

uo = @1,1 - u l . J J ) / 2 ?  (19) 

where J J  is the number of grid spacings in the &direction. Since only the asymptotic steady-state 
solution is of interest, we can choose a spatially varying time step to accelerate 
convergence, allowing At to vary in space for a fixed Courant number, C,, according to 
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Cr 

The details of choosing Cr and 5 are described in Reference 12. 

4. RESULTS AND DISCUSSION 

Calculations were performed for the range 5 < D < 30,000 for three values of 6:0.01,0.1 and 0.2. A 
strict central difference scheme with a 25 x 40 grid was used throughout inside the computational 
domain. A steady-state is considered reached if the local maximum of the divergence of velocity, 
max(V.u)i,j, is less than lo-’ - 5 x the coeficient of artificial compressibility, 5 ,  is taken to 
lie between 1 and 3 x depending upon the values of D and 6. The Courant number, C,, is 
taken as 15 - 30. The numbers of time steps to reach steady-state are 120 - 700 according to 
the values of D and 6. 

For s, the stretching parameter described in (17), two values, 1 and 10, have been used for D 
less than and greater than 14,000, respectively. We call the cases s = 1 and 10 cases (I) and (11), 
respectively. Figure 3(a), exhibiting the pressure or the axial velocity grids, shows the axial velocity 
profiles along the x-axis, whereas Figure 3(b) shows the locations of the u-velocities and the u, 
velocity profile. Agreement of the w and u,-velocity profiles for cases (I) and (11) is excellent, 
suggesting that the numerical scheme used in the present study is almost grid-size independent. 

Before a physical interpretation can be given to the results it is necessary to determine the 
relationship between the dimensionless parameter R,  and the Reynolds number based upon the 
mean axial velocity W,. This velocity is given by 

W, = 2 1; In W0wJ dr’d4 = - 2Wo 1: 1; wrdrd4 .  
7c nu’ 0 

Therefore, W, = (21/7c) W,, where 

I = [l [l wrdrd4,  

and the Reynolds number, Re, becomes 

21 21 
Re= W,u/v=(W,a/v)-= Ro-. 

7l 71 

Clearly, the mean axial velocity, and hence Re, can be determined only after each calculation is 
completed. Basing the Dean number ti upon W,, i.e. ti = (2Wmu/v)6”’, is in many ways more 
convenient and useful to experimental workers and those treating developing flow. 

The friction ratio fc/ f,, defined as the ratio of the pressure gradient in a curved pipe to that in a 
straight pipe for the same flow rate, is given by the expression 

7c Ga4 

where QJQ, is the ratio of the flow rate in a curved pipe to that in a straight pipe for the same 
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pressure gradient. Table I contains the calculated values of Re, K and f,/ f, for the different values 
of D and 6. Comparisons of the results obtained from using different values of s are made in 
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Table 1. Dean numbers (0 and K). Reynolds numbers 
and friction ratios 

5 0.9902 
5 10 1.3996 

100 4.4253 

0.8857 0.9980 
0.8852 0.9985 
0.8851 0.9987 

5 1.9798 
10 10 2.7988 

100 8.8504 

5 18.1369 
96 10 25.9351 

100 82.9387 

1,7708 0.9983 
1.7701 0.9987 
1.7701 0.9987 

16.2221 1.0461 
16.4028 1.0346 
16.5877 1.023 1 

~~ 

5 33.9 172 30.3365 1.1654 
200 10 48,7748 30.8479 1.1461 

100 156.9089 3 1.38 18 1.1266 

5 7 1.0435 635432 1.3910 
500 10 102.4867 64.8 182 1.3636 

100 330.7375 66.1475 1.3362 

5 122.5533 109.6 1 50 1.6127 
1,m 10 176.8413 11 1.8442 1.5806 

100 570.7082 114.1416 1.5488 

5 205.2341 183,5669 1.9260 
2,000 10 296.3301 187.41 56 1,8865 

100 9564378 191.3675 1.8475 

5 398.6581 3563706 2.4789 
5,wJ 10 575.5788 364.0279 2.4281 

100 1858.681 371.7362 2.3777 

5 508.2507 454.5932 2,7221 
7,000 10 733.5694 463.9500 2.6672 

100 2368.287 473.6574 2.6 125 

5 656.2792 586.9939 3.0116 
10,000 10 947,3339 599,1465 2,9505 

100 3057338 611,5075 2.8908 

5 837.8993 749.4399 3.3023 
14,000 10 1209.316 764.8382 3.2358 

100 3899.487 779.8972 3,1733 

16,000 5 920.1 880 823.0412 3.4366 
~ .- _ _ ~ _ _ _ _ _ _ _  

5 998.9766 893.5118 33612 
18,000 10 1440.440 911.0142 3.4928 

100 4646,050 929.2099 3.4244 

5 1074.665 96 1.2092 3.6782 
20,000 10 1549.3 12 979.8708 3.6082 

100 4999.287 999.8570 3.5360 

~ . - - _ _ _ _ _ _ - ~  

5 1217 795 
24,000 10 1756.626 

100 5666 220 

5 1285 664 
26,000 10 1854 457 

30,000 5 I417 563 
10 2044.46 I 

_ _ _ _  

._ -~ ~ 

1089.229 3.895 1 
11 10.988 3.8 I88 
1133.244 3.7438 

1149,933 3.9969 
1 172.86 1 3.9188 

.. 

1267.907 4.1827 
1293.03 1 4.1015 
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Table 11. Variation of numerical results with grid 

Case (I) Case (11) 
D 116 Re K f c l f s  Re K f c l f s  

14,000 5 832.4593 744.5742 3.3239 837.8993 749.4399 3.3023 
100 3879.104 775.8207 3.1900 3899.487 779.8972 3.1733 

18,000 5 991.5052 886.8292 3.5880 998.9766 893.5118 3.5612 
100 4620.595 924.1 189 3.4433 4646.050 929.2099 3.4244 

20,000 5 1065.927 953.3937 3.7084 1074.665 961.2092 3.6782 
100 4961.693 992.3385 3.5628 4999.287 999.8570 3.5360 

24,000 5 1207.462 1079.987 3.9284 1217.5951 1089.229 3.895 1 
100 5617.777 1123.555 3.7761 5666.220 1133.244 3.7438 

Table 11, and show that all of the results for each D and 6 differ by less than 1 per cent from each 
other, further supporting the grid independence of the present numerical scheme. The present 
values of ic and fc/  f, for 6 = 001 agree excellently with those of Dennis,13 who obtained solutions 
for the range 96 6 D 6 5000. Even at the highest values of D we were unable, despite our most 
vigorous efforts, to find a four-vortex family of  solution^.^*'^ 

Curvature effect on the friction ratio 

The friction ratio, fc /  f,, plotted against icllz is illustrated in Figure 4 for the three values of 6. 
This is drawn in such a way that two neighbouring data points are connected by a straight line. 
Except for a low Dean number region (ic less than about 16), fc/  f, varies almost linearly with icl/’ 

and tends to have higher values as 6 increases for the same IC. The variation of f c /  f ,  with 6 may be 
best described if we have the values of fc /  f, for the exactly same ic. Unfortunately this is almost 
impossible, because ic is only obtained as a part of the solution for a fully developed flow; therefore, 
to observe the behaviour of fc /  f, with 6, the friction ratio for 6 = 0.2 is interpolated with a linear 
function of 12’’ between two neighbouring data points to yield the value of fc/f, for the same ic of 
the case 6 = 0.01. We define the following to examine the curvature effect: 

where ( f c /  f,)a=o.ol is the friction ratio at 6 = 0.01, [ f c /  f,]a=o.z the interpolated one at 6 = 0.2 for 
the same ic as at 6 = 001. The d ( ~ )  can be considered as a measure for examining the effect of 
curvature. As shown in Table 111, d(ic) increases as K becomes larger; therefore the curvature effect 
on fc/f, must not be underestimated for high IC. 

For very low K ,  the curvature effect on fc /  f ,  is quite reversed; that is, for IC less than about 2 (see 
Table I), the friction ratio itself is less than unity and, moreover, fc /  f ,  gets smaller as 6 increases. 
These surprising phenomena have been reported in the series expansion studies by Topakoglu15 
and Larrain and Bonilla.16 



Figure 4. Friction ratio vs. K ' / ~  

Table 111. Effect of curvature on the friction 
ratio 

0.885 5 09980 -0.07 
100 09987 

1.770 5 0.9983 -004  
100 09987 

16.588 5 1.0497 2.60 
100 1.0231 

66.148 5 1.4054 5.18 
100 1.3362 

114.142 5 1.6345 5.53 
100 1.5488 

61 1.508 5 3.0578 5.78 
100 2.8908 

779.897 5 3.3587 5.84 
100 3.1733 

1133.244 5 3.9692 602 
100 3.7438 
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-1 x =o 
Figure 5(a). w-profile on the plane of symmetry for 6 = 0.01 

Main flow 

For future discussion let us redefine the dimensionless velocities u, u, w and u, to be 
non-dimensionalized by the mean velocity W,, that is u = u'/W,, etc. Figures 5(a), (b) and (c) 
show axial velocity profiles along the plane of symmetry for 6 =0.01, 0.1 and 0.2, and 
2000 < D < 30,000. We see that for a given 6 the maximum value of w decreases and its location 
shifts further toward the outer bend (x = 1) as D or K increases. For 6 = 0.01 and K = 191.37, 
611-51 and 999.86 the maximum value of w is 1.74 at x=071 ,  1.68 at x =0.81 and 1.67 at 
x = 0.87, respectively. For 6 = 0-1 and K = 187.42, 599.15 and 1293.03 the maximum values of 
w are 1.67 at x = 068, 1.61 at x = 0.80 and 1-59 at x = 0.89, respectively. And, finally for 6 = 0 2  
and K = 183.57, 586.99 and 1267.91, w has maximum values of 1.61 at x = 0.67, 1.53 at x = 0.79 
and 1.51 at x = 0.88, respectively. For the same D, assuming that IC falls in the same range, the 
maximum value of w decreases as 6 increases, which indicates that the axial velocity is more 
evenly distributed for larger 6 because of the stronger secondary flow. This is apparent in Figure 6 
where the axial velocity contours of the high velocity regime for 6 = 0-2 are seen to occupy a 
larger area than those for 6 = 0.01. 

Figures 5(a), (b) and (c) also illustrate that as K increases the axial velocity profiles become 
more distorted and have more inflexion points; for example, for 6 = 0.1, a single inflexion point 
is present for K = 187.42, and two inflexion points for K = 599.15, and these become more 
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Figure 5(b). w-profile on the plane of symmetry for 6 = 0.1 
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-1 x =o 
Figure 5(c). w-profile on the plane of symmetry for 6 = 0.2 

1 
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a 

a 
w + 
0 

Figure 6. Axial velocity, w, contour: upper half-6 = 0.2 and D = 24,000 (x = 1089.23); lower half-6 = 0.01 and 
D = 24,000 ( K  = 1133.24) 

conspicuous as IC increases, leading to velocity profiles as complicated as that shown for IC = 1293.03. 
Velocity profiles containing multiple inflexion points have been reported experimentally by 
Agrawal et a/.” (see their Figure 5(e), the curve denoted by A). In Figure 6 we also see that for 
high IC there exists a region where the isovelocity lines double back on themselves; thus a local 
second maximum appears if the axial velocity profile is plotted along a plane parallel to the 
plane of symmetry. This does not occur for low K (see Figure 8, Reference 8). All of the above 
mentioned features of the axial flow can be explained in connection with the behaviour of the 
secondary flow, and this will be done below. 

Secondary flow 

A stream function for the secondary flow, $, is defined by 
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Figure 7. Streamlines for 6 =0.1: (a) D = 2000 (K = 187.42); (b) D = 10,000 (K = 599.15); (c) D = 24,000 (K = 1110.99) 
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Figures 7(a), (b) and (c) show the secondary flow streamlines for 6 = 0.1 and various Dean numbers. 
The streamlines becomes more and more distorted and the location of the centre of the vortex shifts 
increasingly towards the inner side of the bend as K increases. In Figures 7(b) and (c) the secondary 
flow streamlines are not only severely distorted, they are also elongated, so that faster moving fluid 
particles (i.e. larger w) near the outer bend are readily conveyed into the inner bend; this may be the 
reason for the appearance, for large K ,  of the second maximum in the axial velocity profile in the 
plane parallel to the plane of symmetry. 

Figures 8(a), (b) and (c) show u,., which is u on 4 = 0 and - u on 4 = n. For small K a single peak 
occurs in the u, profile (see Figure 19, Reference 18); this single peaked profile becomes a double- 
peaked and then a triple-peaked profile as K increases. For example, for 6 = 0.2, the maxima in u, 
appear at x = - 0.34 and 0.63 for K = 183.57, and x = - 0.53,0.22 and 0.88 for K = 1267.91. If we 

- 

- 

- 

-1 x=o 1 

-1 x=o 1 

C 
0.08 - 

- 

Figure 8. The u,-profiles along the plane of symmetry for: (a) 6 = 0.01; (b) 6 = 0.1; (c) 6 = 0.2 
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V- 
0.1 0 - 01 

V- 
0.2 0.1 0 

I I 

V- 
0.2 0.1 0 

Figure 9. The o-profile at 4 = 90" for (a) D = 96; (b) D = 5000, (c)  D = 20,000 

examine the axial velocity profiles for these K and 6 (see Figure 5(c)) it can be conjectured that 
x = - 0.34 and 0.63 are the inflexion and (nearly) maximum velocity points, respectively, in the 
w-profile for K = 183.57. For K = 1267.91, x = - 0.53, 0.22 and 088 correspond to the first and 
second inflexion points from the inner bend, and the maximum velocity location in the 
w-profile, respectively. Similar conjectures can be made for the flows for which 6 = 0.1 and 0.01. 
It is also observed from Figures 8(a), (b) and (c) that the overall magnitude of u, gets larger as 
6 takes on larger values. 

Figures 9(a), (b) and (c) show the u-profiles at &I = 90" for D = 96,5000 and 20,000, with K having 
approximately the same value for each D. For D = 96 ( K  E 16), the u-velocities are distributed 
smoothly from the centre to the wall, but it should be noted that even for the case of small K the 
curvature effect is already conspicuous if one compares the maximum of 0.03 for 6 = 0.01 with that 
of 0.135 for 6 = 0.2. As D or K increases the variation of u takes on a boundary-layer-type character, 
changing rapidly near the wall, as shown in Figures 9(b) and (c). For D = 20,000 ( K  z 960 - 1000) 
the maximum of u is 0.07 for 6 = 0.01 and 0.29 for 6 = 0.2, which means that the order of magnitude 
of the relative difference in the peak velocities between 6 = 0.2 and 001 remains almost the same for 
a wide range of D or K (the very low K case is excluded). From the facts that the absolute peak value 
increases and the boundary layer gets thinner, keeping the order of magnitude of the relative 
difference (about a factor of 4 between 6 = 0 2  and 0.01 for the wide range of K considered here) in 
the peak velocities the same, it is obvious that the circumferential shear stress becomes larger as 6 
increases for the given D or K .  

The shear stresses at the wall (Y = 1) are defined as 
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Figure 10. The fraction of circumferential shear, T,&, along the torus of the wall: (a) D = 96; (b) D = 5000; (c) D = 24,000 

where qd is the circumferential, z , ~  the axial and T~ the total wall shear, respectively. 
Figures 10(a), (b) and (c) show the variation of zr&, along the wall. For D = 9 6 ,  
t,&, rises as high as 0.27 and 0.20 for 6 =0.2 and 0.1, respectively, whereas it remains 
at a much lower 0.065 for 6 =0.01. As D or IC increases z,& becomes larger, reaching 
values as high as 0.65 for 6 = 0.2, but remains small, less than 0.20, for 6 = 0.01 (see Figure lO(c)). 
At D = 9 6  the difference in the peak values of zrd/zt between 6 =0.2 and 0.01 is 
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about 0.2, at D = 5000, 0.44, and at 24,000,0.46. These results clearly indicate that the effects of 
curvature on the secondary flow become greater as K increases, and that even for low values of 
K curvature effects should not be underestimated in considerations of the behaviour of the 
secondary flow. 

As we can see in Figure 1O(c) for D = 24,000 (ti 2 1090 - 1130) there is a region near the inner 
bend where z& drops abruptly, which becomes more striking as 6 becomes larger. If we consider 
a boundary-layer approximation for the secondary flow marching from 4 = 0 toward n along the 
torus of the wall, then 4 = 0 mimics a stagnation leading edge in the development of the boundary- 
layer flow. As the boundary-layer type secondary flow marches toward the inner part of the bend 
(i.e. toward 4 = n), tr4/zL increases gradually and then remains unchanged over a considerable 
distance (from Figure lO(c)), 0" < 4 < 75" for the increasing region, and 75" < 4 < 130" for the 
plateau region . The boundary-layer thickness remains relatively thin in this overall region 
0" < 4 < 130°, and the boundary-layer approximation is valid up to this point; beyond 4 = 130" 
there is a precipitous drop in zrb/z,, indicating a sudden growth of the boundary-layer 
thickness, and the boundary-layer approximation is probably no longer appplicable. (see 
Reference 19, Table I, and the sudden growth in the boundary-layer thickness beginning at  - 60".) 
This behaviour may explain why most boundary-layer approximations fail near the inner wall. 

We can define a dimensionless shear stress as z = total shear stress/shear stress in a straight pipe 
for the same Re, or 

T = f [ (Z)  ' + ( !!)' ] l'' 
r = l  

Figures 1 i(a), (b) and (c) show z for 500 d D 6 20,000 and 6 = 0.01, 0.1 and 0.2, respectively. For 
large D, say D=20,000, these Figures indicate precipitous drops in the total shear, which is 
attributable to the behaviour of the secondary flow (i.e. au/ar at Y = 1) near the inner wall. For small 
6, say 6 = 0.01 or 0.1, the maximum of the total shear occurs at 4 = 0, but for large 6 the maximum 
point is shifted away from 4 = 0, making a valley in the shear distribution for high D (see 
Figure 1 l(c) for D = 20,000). The valley becomes deeper as D or K increase, which can be seen by the 
broken line in (c) for D = 30,000. 

5. CONCLUSIONS 

The numerical results show that the present central-differenced, factored AD1 method is stable on 
the staggered grid, free of spurious spatial oscillations in the flow variables. We also conclude from 
the results that the numerical scheme is not subject to limitations on the cell Reynolds numbers, 
R,uAr and R , v r A 4  (u, v are non-dimensionalized with W,), owing to the close coupling between 
velocity and pressure on the staggered grid. The cell Reynolds numbers appearing in the large D 
calculations are much larger than 2. 

The artificial compressibility t is chosen to be the order of 1/(u2 + u'). Although we can use 
relatively large Courant numbers, too large a value of C, is not recommended, because the system 
(15) and (16) becomes highly inconsistent with (13) for very large C,. 

As shown in Table 111 and Figure 4 the b-dependency of the friction ratio increases as the Dean 
number increases. For high D or K flows there appear inflection points in the w'/Wm profiles and 
multiple maxima in the u, profiles. The most striking features of the b-dependency on the flow are (i) 
the magnitude of the peak value of the velocity u'/Wm in the secondary flow boundary layer is 
greatly influenced by 6 for the same D (or same range of K ) ,  as shown in Figure 9; (ii) the skin 
friction, zr4/z, (Figure lo), increases with and is very sensitive to the value of 6, and in addition, 
second maxima near the inner bend become more conspicuous. Therefore, although the 
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Figure 1 I .  Total shear distribution along the wall: (a) 6 = 0.01; (b) 6 = 0.1; (c) 6 = 0.2 

assumption of very small 6 for the calculation of the friction ratio is reasonable, with less than 10 
per cent error for a wide range of Dean numbers, the full Navier-Stokes equations without any 
assumption on the value of 6 must be solved to accurately determine local flow behaviour. 
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APPENDIX: CENTRAL-DIFFERENCE FINITE DIFFERENCE EQUATIONS 

Let us define d, B, %, 9 and Y to be h, B, h ,  B, h, Blh,, h ,  Blh, and h,  h, B, respectively, which may 
be interpreted as the convection areas (d and W), diffusion areas (U and 9) in the r and4-  
directions, and the volume (Y). The symbols d,, W,, %,, 9, are defined on the a-cell 
boundaries with superscripts “ + ” and ‘’ - ” (see Figure 12). The central-difference finite difference 
equations for (15) and (16) can be written in the staggered grid as follows. 

In  the &sweep (prediction step denoted by *) 

~ ? ; v : ( A u ~ , ~ + ,  + Auij)* -W;vU-(A~ij + A ~ i , j - , ) *  

2A4 

where 
d: (u;), - dU-(uu-) ,  g:v:.uuw - W!;v;uue 

4 
- ( R u ) ~ ~  = &[ - Vl Ar 

+ u: ( M i +  1 ,  j - uij)” - uu- ( U i j  - Mi- 1 ,  j)” 

9 : (u i , j+l  - u i j ) ” - 9 u - ( u i j - u i , j - ~ ) ”  
R d W 2  

RoAr2 

1 + 
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9; (Wi, j +  1 - wijy - 9 - (w.. - w. . )” 
- AtC,, P U 1 , J - l  

R0Q2 
+ 

Here 
u: = ( U i +  1. j + UijY/2, 

v: = ( V i j  + vi+ 1, j)”/2, 

u: = ( U i j  + ui, j+1)”/2, 

0: = ( V i j  + ui, j +  1 )”/2, 

u; = (Uij + ui- 1. ,)”I2 

vu- = (4, j -  1 + u i+  1 ,  j -  1 )”/2, 

ut: = @ - I ,  j + ui- 1, j+1)”/2> 

v; = ( O i j  + vi, j -  1 )”/2, 

uuw = ( u ~ , ~ +  + uij)”/2, uue = (u i j  + ui.  j -  ,)“/2, 

vvn = ( u ~ ~ + v ~ + , , ~ ) ” / ~ ,  vvs =(uij+ui-,,j)”/2, 

wwn = (wij + wi+ 1 ,  ,)”/2, wws = (wij + wi- 1 ,  ,)“/2, 

www=(wij+ ~ ~ , ~ + ~ ) ” / 2 ,  wwe=(wij+ ~ ~ , ~ - ~ ) ” / 2 ,  

C,, C,, C, are the central-difference expressions of the components of C in (13), and the subscripts 
on Y denote the appropriate volume for that variable. 

In  the r-sweep (correction step denoted by n + 1) 
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= Aw:, 1 ~ ; ( A W ~ + ~ ,  - Awij)n+l -g;(Awij-  Awi -  1. j ) n + '  
- 

RoAr2 (34) 

As can be seen in (29) and (31), v and p are coupled in the +-sweep. Also, in the r-sweep, u and 
p (equations (32), (35)) are coupled. The resulting coupled equations lead to 2 x 2 block matrices 
in each sweep. It can be seen that Vp and V.u are approximated by two-point central difference 
relations in the momentum and continuity equations. In the +-sweep, writing (31) for j = j  + 1 
and j and subtracting the latter from the former gives ApiTj+ - Api";. in terms of AuiTj- Au: 
and A$  j +  If we substitute this into (29), (29) can be written in a tridiagonal form as 

The reader will recognize E,  F ,  H and the RHS easily. (28) and (30) can be written in the same 
way as (36). A standard tridiagonal matrix solver-backward-substitution using a recurrence 
formula-is used for the solution of (28)-(30), then Api";. in (31) is obtained. Calculation procedures 
in the r-sweep are similar to those for the +-sweep. 

Finite-difference equations at the centre (or i = 1) can be constructed in a reasonably natural 
way for the staggered grid; that is, for the u-momentum, u; and V;(uij - ui- j )  in ( R u ) ~ ~  become 
(uo cos + + ~ , , ~ ) " / 2  and %u-(ul , j  - uo cos @), respectively, and assigning to uo cos +, which is u at 
the centre, the value at nAt, the expressions (Auij + Aui-  l , j ) n + l  and Vu-(Auij - Aui -  in (32) 
become AM::' and W u - A u ~ ~ l .  For the o,w and p (continuity) equations we take maximum 
advantage of the staggered grid, for which ~',,-,Jz?;,%~- and %; are exactly zero. 

The finite-difference formulations described in this Appendix can be directly applied to the 
case with co-ordinate stretching. 
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